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Abstract

Using one of the key property of copulas that they remain invariant under an arbitrary
monotonous change of variable, we investigate the null hypothesis that the dependence between
financial assets can be modeled by the Gaussian copula. We findthat most pairs of currencies
and pairs of major stocks are compatible with the Gaussian copula hypothesis, while this hy-
pothesis can be rejected for the dependence between pairs ofcommodities (metals). Notwith-
standing the apparent qualification of the Gaussian copula hypothesis for most of the currencies
and the stocks, a non-Gaussian copula, such as the Student’scopula, cannot be rejected if it
has sufficiently many “degrees of freedom”. As a consequence, it may be very dangerous to
embrace blindly the Gaussian copula hypothesis, especially when the correlation coefficient be-
tween the pair of asset is too high, so that the tail dependence neglected by the Gaussian copula
can became large, leading to ignore extreme events which mayoccur in unison.
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1 Introduction

The determination of the dependence between assets underlies many financial activities, such as risk
assessment and portfolio management, as well as option pricing and hedging. Following (Markovitz
1959), the covariance and correlation matrices have, for a long time, been considered as the main
tools for quantifying the dependence between assets. But the dimension of risk captured by the
correlation matrices is only satisfying for elliptic distributions and for moderate risk amplitudes
(Sornetteet al. 2000b). In all other cases, this measure of risk is severely incomplete and can lead
to a very strong underestimation of the real incurred risks (Embrechtset al. 1999).

Although the unidimensional (marginal) distributions of asset returns are reasonably constrained
by empirical data and their tails are more or less satisfactorily described by a power law with tail in-
dex ranging between 2 and 4 (De Vries 1994, Lux 1996, Pagan 1996, Guillaumeet al. 1997, Gopikr-
ishnanet al. 1998, McNiel and Frey 2000), by stretched exponentials (Laherrère and Sornette
1998, Gouriéroux and Jasiak 1999, Sornetteet al. 2000a, Sornetteet al. 2000b) or by log-Weibull
distributions (Malevergneet al. 2003), no equivalent results have been obtained formultivariate
distributions of asset returns. Indeed, a brute force determination of multivariate distributions is
unreliable due to the limited data set (the curse of dimensionality), while the sole knowledge of
marginals (one-point statistics) of each asset is not sufficient to obtain information on the multivari-
ate distribution of these assets which involves all then-points statistics.

Some progress may be expected from the concept of copulas, recently proposed to be useful
for financial applications (Embrechtset al. 2001, Frees and Valdez 1998, Haas 1999, Klugman
and Parsa 1999). This concept has the desirable property of decoupling the study of the marginal
distribution of each asset from the study of their collective behavior or dependence. Indeed, the
dependence between assets is entirely embedded in the copula, so that a copula allows for a simple
description of the dependence structure between assets independently of the marginals. For instance,
assets can have power law marginals and a Gaussian copula or alternatively Gaussian marginals and
a non-Gaussian copula, and any possible combination thereof. Therefore, the determination of the
multivariate distribution of assets can be performed in twosteps : (i) an independent determination
of the marginal distributions using standard techniques for distributions of a single variable ; (ii) a
study of the nature of the copula characterizing completelythe dependence between the assets. This
exact separation between the marginal distributions and the dependence is potentially very useful
for risk management or option pricing and sensitivity analysis since it allows for testing several
scenarios with different kind of dependences between assets while the marginals can be set to their
well-calibrated empirical estimates. Such an approach hasbeen used by Embrechtset al. (2001) to
provide various bounds for the Value-at-Risk of a portfoliomade of depend risks, and by Rosenberg
(1999) or Cherubini and Luciano (2000) to price and to analyze the pricing sensitivity of binary
digital options or options on the minimum of a basket of assets.

A fundamental limitation of the copula approach is that there is in principle an infinite number
of possible copulas (Genest and MacKay 1986, Genest 1987, Genest and Rivest 1993, Joe 1993,
Nelsen 1998) and, up to now, no general empirical study has determined the classes of copulas that
are acceptable for financial problems. In general, the choice of a given copula is guided both by
the empirical evidences and the technical constraints, i.e., the number of parameters necessary to
describe the copula, the possibility to obtain efficient estimators of these parameters and also the
possibility offered by the chosen parameterization to allow for tractable analytical calculation. It
is indeed sometimes more advantageous to prefer a simplest copula to one that fit better the data,
provided that we can clearly quantify the effects of this substitution.
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In this vein, the first goal of the present article is to wonderwhether the Gaussian copula pro-
vides a sufficiently good approximation of the unknown true copula, on a statistical basis. Such an
investigation is really anchored at the heart of many financial problems since the Gaussian copula
sustains almost all current financial theories. Obviously,the Gaussian copula is rooted into the tra-
ditional theories relying on the multivariate Gaussian description, but it is also widespread in the
most recent financial applications such as the modeling the dependent defaults1 as exemplified by
the model of CreditMetrics or KMV, for instance or such as thepricing of credit derivatives ().
Thus, there is a real need for a test of the ability of the Gaussian copula to model financial de-
pendencies. Our second goal is to draw the consequences of the parameterization involved in the
Gaussian copula in term of potential over/underestimationof the risks, in particular for large and
extreme events.

The paper is organized as follows.

In section 2, we first recall some important general definitions and theorems about copulas that
will be useful in the sequel. We then introduce the concept oftail dependence that will allow us
to quantify the probability that two extreme events might occur simultaneously. We define and
describe the two copulas that will be at the core of our study :the Gaussian copula and the Student’s
copula and compare their properties particularly in the tails.

In section 3, we present our statistical testing procedure which is applied to pairs of financial
time series. First of all, we determine a test statistics which leads us to compare the empirical
distribution of the data with aχ2-distribution using a bootstrap method. We also test the sensitivity
of our procedure by applying it to synthetic multivariate Student’s time series. This allows us to
determine the minimum statistical test value needed to be able to distinguish between a Gaussian
and a Student’s copula, as a function of the number of degreesof freedom and of the correlation
strength.

Section 4 presents the empirical results obtained for the following assets which are combined
pairwise in the test statistics:

• 6 currencies,

• 6 metals traded on the London Metal Exchange,

• 22 stocks chosen among the largest companies quoted on the New York Stocks Exchange.

We show that the Gaussian copula hypothesis is very reasonable for most stocks and currencies,
while it is hardly compatible with the description of multivariate behavior for metals.

Section 5 summarizes our results and concludes.

2 Generalities about copulas

2.1 Definitions and important results about copulas

This section does not pretend to provide a rigorous mathematical exposition of the concept of cop-
ula. We only recall a few basic definitions and theorems that will be useful in the following (for
more information about the concept of copula, see for instance Nelsen (1998).

1Following the recommendations of the Basle committee on supervision banking (2001), the Gaussian copula must
be chosen to model the dependence between defaults.
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We first give the definition of a copula ofn random variables.

DEFINITION 1 (COPULA)
A function C : [0, 1]n −→ [0, 1] is an-copula if it enjoys the following properties :

• ∀u ∈ [0, 1], C(1, · · · , 1, u, 1 · · · , 1) = u ,

• ∀ui ∈ [0, 1], C(u1, · · · , un) = 0 if at least one of theui equals zero ,

• C is grounded andn-increasing, i.e., theC-volume of every box whose vertices lie in[0, 1]n

is positive.

It is clear from this definition that a copula is nothing but a multivariate distribution with support
in [0,1]n and with uniform marginals. The fact that such copulas can bevery useful for representing
multivariate distributions with arbitrary marginals is seen from the following result.

THEOREM 1 (SKLAR ’ S THEOREM)
Given ann-dimensional distribution functionF with continuous marginal (cumulative) distributions
F1, · · · , Fn, there exists aunique n-copulaC : [0, 1]n −→ [0, 1] such that :

F (x1, · · · , xn) = C(F1(x1), · · · , Fn(xn)) . (1)

This theorem provides both a parameterization of multivariate distributions and a construction
scheme for copulas. Indeed, given a multivariate distribution F with marginalsF1, · · · , Fn, the
function

C(u1, · · · , un) = F
(

F−1
1 (u1), · · · , F−1

n (un)
)

(2)

is automatically an-copula2. This copula is the copula of the multivariate distributionF . We will
use this method in the sequel to derive the expressions of standard copulas such as the Gaussian
copula or the Student’s copula.

A very powerful property of copulas is their invariance under arbitrary strictly increasing map-
ping of the random variables :

THEOREM 2 (INVARIANCE THEOREM)
Considern continuous random variablesX1, · · · ,Xn with copulaC. Then, ifg1(X1), · · · , gn(Xn)
are strictly increasing on the ranges ofX1, · · · ,Xn, the random variablesY1 = g1(X1), · · · , Yn =
gn(Xn) have exactly the same copulaC.

It is this result that shows us that the full dependence between then random variables is completely
captured by the copula, independently of the shape of the marginal distributions. This result is at
the basis of our statistical study presented in section 3.

2The quantile functionF−1
i of the distributionFi can be defined by:

F
−1
i (u) = inf{x | Fi(x) ≥ u}, ∀u ∈ (0, 1).

When the distribution functionFi is strictly increasing,F−1
i denotes the usual inverse ofFi. In fact, any quantile function

can be chosen. But, for non-continuous margins, the copula (2) will depend upon the precise quantile function which will
be selected.
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2.2 Dependence between random variables

The dependence between two time series is usually describedby their correlation coefficient. This
measure is fully satisfactory only for elliptic distributions (Embrechtset al. 1999), which are func-
tions of a quadratic form of the random variables, when one isinterested in moderately size events.
However, an important issue for risk management concerns the determination of the dependence of
the distributions in the tails. Practically, the question is whether it is more probable that large or
extreme events occur simultaneously or on the contrary moreor less independently. This is refered
to as the presence or absence of “tail dependence”.

The tail dependence is also an interesting concept in studying thecontagion of crises between
markets or countries. These questions have recently been addressed by (Ang and Cheng 2001,
Longin and Solnik 2001, Starica 1999) among several others.Large negative moves in a country or
market are often found to imply large negative moves in others.

Technically, we need to determine the probability that a random variableX is large, knowing
that the random variableY is large.

DEFINITION 2 (TAIL DEPENDENCE 1)
Let X andY be random variables withcontinuous marginalsFX andFY . The (upper) tail depen-
dence coefficient ofX andY is, if it exists,

lim
u→1

Pr{X > F−1
X (u)|Y > F−1

Y (u)} = λ ∈ [0, 1] . (3)

In words, given thatY is very large (which occurs with probability1− u), the probability thatX is
very large at the same probability levelu defines asymptotically the tail dependence coefficientλ.

It turns out that this tail dependence is a pure copula property which is independent of the marginals.
Let C be the copula of the (assumed continuous) variablesX andY , then

THEOREM 3
if the bivariate copulaC is such that

lim
u→1

C̄(u, u)

1 − u
= λ (4)

exists (whereC̄(u, u) = 1 − 2u + C(u, u)), thenC has an upper tail dependence coefficientλ.

If λ > 0, the copula presents tail dependence and large events tend to occur simultaneously,
with the probabilityλ. On the contrary, whenλ = 0, the copula has no tail dependence in this
sense and large events appear to occur essentially independently. There is however a subtlety in this
definition of tail dependence. To make it clear, first consider the case where for largeX andY the
distribution functionF (x, y) factorizes such that

lim
x,y→∞

F (x, y)

FX(x)FY (y)
= 1 . (5)

This means that, forX andY sufficiently large, these two variables can be considered asindepen-
dent. It is then easy to show that

lim
u→1

Pr{X > F−1
X (u)|Y > F−1

Y (u)} = lim
u→1

1 − FX(F−1
X (u)) (6)

= lim
u→1

1 − u = 0, (7)
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so that independent variables really have no tail dependence, as one can expect.

Unfortunately, the converse does not holds : a valueλ = 0 does not automatically imply true
independence, namely thatF (x, y) satisfies equation (5). Indeed, the tail independence criterion
λ = 0 may still be associated with an absence of factorization of the multivariate distribution for
largeX andY . In a weaker sense, there may still be a dependence in the taileven whenλ = 0. Such
behavior is for instance exhibited by the Gaussian copula, which has zero tail dependence according
to the definition 2 but nevertheless does not have a factorizable multivariate distribution, since the
non-diagonal term of the quadratic form in the exponential function does not become negligible in
general asX andY go to infinity. To summarize, thetail independence, according to definition 2,
is not equivalent to theindependence in the tail as defined in equation (5).

After this brief review of the main concepts underlying copulas, we now present two special
families of copulas : the Gaussian copula and the Student’s copula.

2.3 The Gaussian copula

The Gaussian copula is the copula derived from the multivariate Gaussian distribution. LetΦ denote
the standard Normal (cumulative) distribution andΦρ,n the n-dimensional Gaussian distribution
with correlation matrixρ. Then, the Gaussiann-copula with correlation matrixρ is

Cρ(u1, · · · , un) = Φρ,n

(

Φ−1(u1), · · · ,Φ−1(un)
)

, (8)

whose density

cρ(u1, · · · , un) =
∂Cρ(u1, · · · , un)

∂u1 · · · ∂un
(9)

reads

cρ(u1, · · · , un) =
1√

det ρ
exp

(

−1

2
yt
(u)(ρ

−1 − Id)y(u)

)

(10)

with yk(u) = Φ−1(uk). Note that theorem 1 and equation (2) ensure thatCρ(u1, · · · , un) in equa-
tion (8) is a copula.

As we said before, the Gaussian copula does not have a tail dependence :

lim
u→1

C̄ρ(u, u)

1 − u
= 0, ∀ρ ∈ (−1, 1). (11)

This result is derived for example in (Embrechtset al. 2001). But this does not mean that the
Gaussian copula goes to the independent (or product) copulaΠ(u1, u2) = u1 · u2 when(u1, u2)
goes to one. Indeed, consider a distributionF (x, y) with Gaussian copula :

F (x, y) = Cρ(FX(x), FY (y)). (12)

Its density is
f(x, y) = cρ(FX(x), FY (y)) · fX(x) · fY (y), (13)

wherefX andfY are the densities ofX andY . Thus,

lim
(x,y)→∞

f(x, y)

fX(x) · fY (y)
= lim

(x,y)→∞
cρ(FX(x), FY (y)), (14)
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which should equal 1 if the variablesX and Y were independent in the tail. Reasoning in the
quantile space, we setx = F−1

X (u) andy = F−1
Y (u), which yield

lim
(x,y)→∞

f(x, y)

fX(x) · fY (y)
= lim

u→1
cρ(u, u). (15)

Using equation (10), it is now obvious to show thatcρ(u, u) goes to one whenu goes to one, if
and only ifρ = 0 which is equivalent toCρ=0(u1, u2) = Π(u1, u2) for every(u1, u2). Whenρ > 0,
cρ(u, u) goes to infinity, while forρ negative,cρ(u, u) goes to zero asu → 1. Thus, the dependence
structure described by the Gaussian copula is very different from the dependence structure of the
independent copula, except forρ = 0.

The Gaussian copula is completely determined by the knowledge of the correlation matrixρ.
The parameters involved in the description of the Gaussian copula are very simple to estimate, as
we shall see in the following.

In our tests presented below, we focus on pairs of assets, i.e., on Gaussian copulas involving only
two random variables. Obviously, for risk management purposes, baskets or portfolios ofn > 2
assets must be considered. Our restriction is not crucial since the testing procedure exposed in sec-
tion 3 can be applied to any number of assets and it is only for the simplicity of the exposition that
we will present the case where only two assets are considered. Moreover, testing the Gaussian cop-
ula hypothesis for two random variables gives useful information for a larger number of dependent
variables constituting a large basket or portfolio. Indeed, let us assume that each pair(a, b), (b, c)
and(c, a) have a Gaussian copula, and in addition that the copula of thetriplet (a, b, c) is elliptical,
which is a reasonable assumption. Then, the triplet(a, b, c) has also a Gaussian copula. This result
generalizes to an arbitrary number of random variables3.

2.4 The Student’s copula

The Student’s copula is derived from the Student’s multivariate distribution. Given a multivariate
Student’s distributionTρ,ν with ν degrees of freedom and a shape4 matrixρ

Tρ,ν(x) =
1√

det ρ

Γ
(

ν+n
2

)

Γ
(

ν
2

)

(πν)N/2

∫ x1

−∞
· · ·

∫ xN

−∞

dx
(

1 + xtρ−1x
ν

)
ν+n

2

, (16)

the corresponding Student’s copula reads :

Cρ,ν(u1, · · · , un) = Tρ,ν

(

t−1
ν (u1), · · · , t−1

ν (un)
)

, (17)

wheretν is the univariate Student’s distribution withν degrees of freedom. The density of the
Student’s copula is thus

cρ,ν(u1, · · · , un) =
1√

det ρ

Γ
(

ν+n
2

) [

Γ
(

ν
2

)]n−1

[

Γ
(

ν+1
2

)]n

∏n
k=1

(

1 +
y2

k

ν

)
ν+1
2

(

1 + ytρ−1y
ν

)
ν+n

2

, (18)

3An elliptical distribution, and then an elliptical copula,is fully determined by the knowledge of its mean, shape (or
covariance) matrix and the generator of its type. Once the distributions of every pairs of random variables(Xi, Xj),
i, j ∈ {1, · · · , N} are known, the type of the generator is fixed and the mean and the shape matrix of the joined
distribution of(X1, X2, · · · , XN ) can be reconstructed.

4The shape matrixρ is equal to the correlation matrix whenν is larger than two, namely when the second moments
of the variablesXi’s exist.
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whereyk = t−1
ν (uk).

Since the Student’s distribution tends to the normal distribution whenν goes to infinity, the
Student’s copula tends to the Gaussian copula asν → +∞. In contrast to the Gaussian copula, the
Student’s copula forν finite presents a tail dependence given by :

λν(ρ) = lim
u→1

C̄ρ,ν(u, u)

1 − u
= 2t̄ν+1

(
√

ν + 1
√

1 − ρ√
1 + ρ

)

, (19)

wheret̄ν+1 is the complementary cumulative univariate Student’s distribution with ν + 1 degrees
of freedom (see (Embrechtset al. 2001) for the proof). Figure 1 shows the upper tail dependence
coefficient as a function of the correlation coefficientρ for different values of the numberν of
degrees of freedom. As expected from the fact that the Student’s copula becomes identical to the
Gaussian copula forν → +∞ for all ρ 6= 1, λν(ρ) exhibits a regular decay to zero asν increases.
Moreover, forν sufficiently large, the tail dependence is significantly different from0 only when
the correlation coefficient is sufficiently close to1. This suggests that, for moderate values of the
correlation coefficient, a Student’s copula with a large number of degrees of freedom may be difficult
to distinguish from the Gaussian copula from a statistical point of view. This statement will be made
quantitative in the following.

Figure 2 presents the same information in a different way by showing the maximum value
of the correlation coefficientρ as a function ofν, below which the tail dependenceλν(ρ) of a
Student’s copula is smaller than a given small value, here taken equal to1%, 2.5%, 5% and10%.
The choiceλν(ρ) = 5% for instance corresponds to1 event in20 for which the pair of variables are
asymptotically coupled. At the95% probability level, values ofλν(ρ) ≤ 5% are undistinguishable
from 0, which means that the Student’s copula can be approximated by a Gaussian copula.

The description of a Student’s copula relies on two parameters : the correlation matrixρ, as
in the Gaussian case, and in addition the number of degrees offreedomν. The estimation of
the parameterν is rather difficult and this has an important impact on the estimated value of the
correlation matrix. As a consequence, the Student’s copulais more difficult to calibrate and use
than the Gaussian copula.

3 Testing the Gaussian copula hypothesis

In view of the central role that the Gaussian paradigm has played and still plays in particular in
finance, it is natural to start with the simplest choice of dependence between different random vari-
ables, namely the Gaussian copula. It is also a natural first step as the Gaussian copula imposes
itself in an approach which consists in (1) performing a nonlinear transformation on the random
variables into Normal random variables (for the marginals)which is always possible and (2) in-
voking a maximum entropy principle (which amounts to add theleast additional information in the
Shannon sense) to construct the multivariable distribution of these Gaussianized random variables
(Sornetteet al. 2000b, Sornetteet al. 2000a, Andersen and Sornette 2001).

In the sequel, we will denote byH0 the null hypothesis according to which the dependence
between two (or more) random variablesX andY can be described by the Gaussian copula.
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3.1 Test Statistics

We now derive the test statistics which will allow us to reject or not our null hypothesisH0 and state
the following proposition:

PROPOSITION1
Assuming that theN -dimensional random vectorx = (x1, · · · , xN ) with distribution functionF
and marginalsFi, satisfies the null hypothesisH0, then, the variable

z2 =

N
∑

j,i=1

Φ−1(Fi(xi)) (ρ−1)ij Φ−1(Fj(xj)), (20)

where the matrixρ is
ρij = Cov[Φ−1(Fi(xi)),Φ

−1(Fj(xj))], (21)

follows aχ2-distribution withN degrees of freedom.

To prove the proposition above, first consider anN -dimensional random vectorx = (x1, · · · , xN ).
Let us denote byF its distribution function and byFi the marginal distribution of eachxi. Let us
now assume that the distribution functionF satisfiesH0, so thatF has a Gaussian copula with
correlation matrixρ while theFi’s can be any distribution function. According to theorem 1,the
distributionF can be represented as :

F (x1, · · · , xN ) = Φρ,N(Φ−1(F1(x1)), · · · ,Φ−1(FN (xN ))) . (22)

Let us now transform thexi’s into Normal random variablesyi’s :

yi = Φ−1(Fi(xi)) . (23)

Since the mappingΦ−1(Fi(·)) is obviously increasing, theorem 2 allows us to conclude that the
copula of the variablesyi’s is identical to the copula of the variablesxi’s. Therefore, the variables
yi’s have Normal marginal distributions and a Gaussian copulawith correlation matrixρ. Thus,
by definition, the multivariate distribution of theyi’s is the multivariate Gaussian distribution with
correlation matrixρ :

G(y) = Φρ,N (Φ−1(F1(x1)), · · · ,Φ−1(FN (xN ))) (24)

= Φρ,N (y1, · · · , yN ), (25)

andy is a Gaussian random vector. From equations (24-25), we obviously have

ρij = Cov[Φ−1(Fi(xi)),Φ
−1(Fj(xj))]. (26)

Consider now the random variable

z2 = ytρ−1y =

N
∑

i,j=1

yi (ρ−1)ij yj , (27)

where·t denotes the transpose operator. It is well-known that the variablez2 follows aχ2-distribution
with N degrees of freedom. Indeed, sincey is a Gaussian random vector with covariance matrix5

ρ, it follows that the components of the vector

ỹ = Ay, (28)
5Up to now, the matrixρ was namedcorrelation matrix. But in fact, since the variablesyi’s have unit variance, their

correlation matrix is also theircovariance matrix.
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are independent Normal random variables. Here,A denotes the square root of the matrixρ−1,
obtained by the Cholevsky decomposition, so thatAtA = ρ−1. Thus, the sum̃ytỹ = z2 is the sum
of the squares ofN independent Normal random variables, which follows aχ2-distribution withN
degrees of freedom.

3.2 Testing procedure

The testing procedure used in the sequel is now described. Weconsider two6 financial series (N =
2) of sizeT : {x1(1), · · · , x1(t), · · · , x1(T )} and{x2(1), · · · , x2(t), · · · , x2(T )}. We assume that
the vectorsx(t) = (x1(t), x2(t)), t ∈ {1, · · · , T} are independent and identically distributed with
distributionF , which implies that the variablesx1(t) (respectivelyx2(t)), t ∈ {1, · · · , T}, are also
independent and identically distributed, with distributionsF1 (respectivelyF2)7.

The cumulative distribution̂Fi of each variablexi, which is estimated empirically, is given by

F̂i(xi) =
1

T

T
∑

k=1

1{xi(k)≤xi}, (29)

where1{·} is the indicator function, which equals one if its argument is true and zero otherwise. We
use these estimated cumulative distributions to obtain theGaussian variableŝyi as :

ŷi(k) = Φ−1
(

F̂i(xi(k))
)

k ∈ {1, · · · , T} . (30)

The sample covariance matrix̂ρ is estimated by the expression :

ρ̂ =
1

T

T
∑

i=1

ŷ(i) · ŷ(i)t (31)

which allows us to calculate the variable

ẑ2(k) =
2

∑

i,j=1

ŷi(k) (ρ−1)ij ŷj(k) , (32)

as defined in (27) fork ∈ {1, · · · , T}, which should be distributed according to aχ2-distribution if
the Gaussian copula hypothesis is correct.

The usual way for comparing an empirical with a theoretical distribution is to measure the
distance between these two distributions and to perform theKolmogorov test or the Anderson-
Darling (Anderson and Darling 1952) test (for a better accuracy in the tails of the distribution). The

6As explained in section 2.3, the caseN = 2 is not restrictive at all, even if it could,a priori, appear of limited
interest. Indeed, for portfolio analysis and risk management purposes, larger basket of assets should be considered.
However, the testing procedure exposed here can be applied to any number of assets, and it is only for the sake simplicity
of the exposition that we have restricted our investigationto the bivariate case.

7 The assumption of independently distributed data is not very realistic. Indeed, it is well-know that daily returns are
uncorrelated but that their volatility exhibits long rangedependence. One can then wonder why we have not filtered the
data by an ARCH or GARCH process (as in Patton (2001)) and thenapply our testing procedure to the residuals. The
main limitation of this approach is the following. The filtering of the data does not let the dependence structure, i.e., the
copula, unchanged. Thus, the copula of the residuals is not the same as the copula of the raw returns. Moreover, the
copula of the residual changes with the chosen filter. Residuals are not the same when one filters the data with an ARCH,
a GARCH or a Multifractal Random Walk (Muzyet al. 2000, Muzyet al. 2001). Therefore, our standpoint has been to
perform a model-free analysis, and thus not to filter the data. Obviously, the price to pay for such a model-free approach
is a weakening of the power of the statistical test due to the presence of (temporal) dependence between data.

11



Kolmogorov distance is the maximum local distance along thequantile which most often occur in
the bulk of the distribution, while the Anderson-Darling distance puts the emphasis on the tails of
the two distributions by a suitable normalization. We propose to complement these two distances
by two additional measures which are defined as averages of the Kolmogorov distance and of the
Anderson-Darling distance respectively:

Kolmogorov : d1 = max
z

|Fz2(z2) − Fχ2(z2)| (33)

average Kolmogorov : d2 =

∫

|Fz2(z2) − Fχ2(z2)| dFχ2(z2) (34)

Anderson − Darling : d3 = max
z

|Fz2(z2) − Fχ2(z2)|
√

Fχ2(z2)[1 − Fχ2(z2)]
(35)

average Anderson − Darling : d4 =

∫ |Fz2(z2) − Fχ2(z2)|
√

Fχ2(z2)[1 − Fχ2(z2)]
dFχ2(z2) (36)

The Kolmogorov distanced1 and its averaged2 are more sensitive to the deviations occurring in the
bulk of the distributions. In contrast, the Anderson-Darling distanced3 and its averaged4 are more
accurate in the tails of the distributions. We present our statistical tests for these four distances in
order to be as complete as possible with respect to the different sensitivity of the tests.

The distancesd2 andd4 are not of common use in statistics, so let us justify our choice. One
usually uses distances similar tod2 andd4 but which differ by the square instead of the modulus
of Fz2(z2) − Fχ2(z2) and lead respectively to theω-test and theΩ-test, whose statistics are the-
oretically known. The main advantage of the distancesd2 andd4 with respect to the more usual
distancesω andΩ is that they are simply equal to the average ofd1 andd3. This averaging is
very interesting and provides important information. Indeed, the distancesd1 andd3 are mainly
controlled by the point that maximizes the argument within the max(·) function. They are thus
sensitive to the presence of an outlier. By averaging,d2 andd4 become less sensitive to outliers,
since the weight of such points is only of order1/T (whereT is the size of the sample) while it
equals one ford1 andd3. Of course, the distancesω andΩ also perform a smoothing since they are
averaged quantities too. But they are the average of the square of d1 andd3 which can lead to an
undesired overweighing of the largest events. Of course, such an overweighing of large events can
be interesting when one want to particularly focus on tail events. In fact, a trade-off between the
sensitivity to (desired) tail events and to (undesired) outliers must be found. That is why we have
preferedd2 andd4, which have seemed to us more convenient, in this respect, than the omega’s
distances. Moreover, the square function is chosen as a convenient analytical form that allows one
to derive explicitely the theoretical asymptotic statistics for theω andΩ-tests. In contrast, using
the modulus ofFz2(z2) − Fχ2(z2) instead of its square in the expression ofd2 andd4, no theoret-
ical test statistics can be derived analytically. In sum, the sole advantage of the standard distances
ω andΩ with respect to the distancesd2 andd4 introduced here is the theoretical knowledge of
their distributions. However, this advantage disappears in our present case in which the covariance
matrix is not knowna priori and needs to be estimated from the empirical data: indeed, the exact
knowledge of all the parameters is necessary in the derivation of the theoretical statistics of theω
andΩ-tests (as well as the Kolmogorov test). Therefore, we cannot directly use the results of these
standard statistical tests. As a remedy, we propose a bootstrap method (Efron and Tibshirani 1986),
whose accuracy is proved by (Chen and Lo 1997) to be at least asgood as that given by asymptotic
methods used to derive the theoretical distributions. For the present work, we have determined that
the generation of 10,000 synthetic time series was sufficient to obtain a good approximation of the
distribution of distances described above. Since a bootstrap method is needed to determine the tests
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statistics in every case, it is convenient to choose functional forms different from the usual ones in
theω andΩ-tests as they provide an improvement with respect to statistical reliability, as obtained
with thed2 andd4 distances introduced here.

To summarize, our test procedure is as follows.

1. Given the original time seriesx(t), t ∈ {1, · · · , T}, we generate the Gaussian variablesŷ(t),
t ∈ {1, · · · , T}.

2. We then estimate the covariance matrixρ̂ of the Gaussian variableŝy, which allows us to
compute the variableŝz2 and then measure the distance of its estimated distributionto the
χ2-distribution.

3. Given this covariance matrix̂ρ, we generate numerically a time series ofT Gaussian random
vectors with the same covariance matrixρ̂.

4. For the time series of Gaussian vectors synthetically generated with covariance matrix̂ρ, we
estimate its sample covariance matrixρ̃.

5. To each of theT vectors of the synthetic Gaussian time series, we associatethe corresponding
realization of the random variablez2, calledz̃2(t).

6. We can then construct the empirical distribution for the variablez̃2 and measure the distance
between this distribution and theχ2-distribution.

7. Repeating 10,000 times the steps 3 to 6, we obtain an accurate estimate of the cumulative
distribution of distances between the distribution of the synthetic Gaussian variables and the
theoreticalχ2-distribution. This cumulative distribution represents the test statistic, which
will allow us to reject or not the null hypothesisH0 at a given significance level.

8. The significance of the distance we got at step 2 for the truevariables - i.e., the probability to
observe, at random and underH0, a distance larger than the empirically estimated distance- is
finally obtained by a simple reading on the complementary cumulative distribution estimated
at step 7.

3.3 Sensitivity of the method

Before presenting the statistical tests, it is important toinvestigate the sensitivity of our testing pro-
cedure. More precisely, can we distinguish for instance between a Gaussian copula and a Student’s
copula with a large number of degrees of freedom, for a given value of the correlation coefficient?
Formally, denoting byHν the hypothesis according to which the true copula of the datais the Stu-
dent’s copula withν degrees of freedom, we want to determine the minimum significance level
allowing us to distinguish betweenH0 andHν .

3.3.1 Importance of the distinction between Gaussian and Student’s copulas

This question has important practical implications because, as discussed in section 2.4, the Stu-
dent’s copula presents a significant tail dependence while the Gaussian copula has no asymptotic
tail dependence. Therefore, if our tests are unable to distinguish between a Student’s and a Gaus-
sian copula, we may be led to choose the later for the sake of simplicity and parsimony and, as a
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consequence, we may underestimate severely the dependencebetween extreme events if the correct
description turns out to be the Student’s copula. This may have catastrophic consequences in risk
assessment and portfolio management.

Figure 1 provides a quantification of the dangers incurred bymistaking a Student’s copula for
a Gaussian one. Consider the case of a Student’s copula withν = 20 degrees of freedom with a
correlation coefficientρ lower than0.3 ∼ 0.4 ; its tail dependenceλν(ρ) turns out to be less than
0.7%, i.e., the probability that one variable becomes extreme knowing that the other one is extreme
is less than0.7%. In this case. the Gaussian copula with zero probability of simultaneous extreme
events is not a bad approximation of the Student’s copula. Incontrast, let us take a correlationρ
larger than0.7 − 0.8 for which the tail dependence becomes larger than10%, corresponding to a
non-negligible probability of simultaneous extreme events. The effect of tail dependence becomes
of course much stronger as the numberν of degrees of freedom decreases.

These examples stress the importance of knowing whether ourtesting procedure allows us to
distinguish between a Student’s copula withν = 20 (or less) degrees of freedom and a given
correlation coefficientρ = 0.5, for instance, and a Gaussian copula with an appropriate correlation
coefficientρ′.

3.3.2 Statistical test on the distinction between Gaussianand Student’s copulas

To address this question, we have generated 1,000 pairs of time series of sizeT = 1250, each pair
of random variables following a Student’s bivariate distribution with ν degrees of freedom and a
correlation coefficientρ between the two simultaneous variables of the same pair, while the variables
along the time axis are all independent. We have then appliedthe previous testing procedure to each
of the pairs of time series.

Specifically, for each pair of Student’s time series, we construct the marginal distributions and
transform the Student’s variablesxi(k) into their Gaussian counterpartsyi(k) via the transforma-
tion (23). For each pair(y1(k), y2(k)), k ∈ {1, · · · , T}, we estimate its correlation matrix, then
construct the time series withT realizations of the random variablez2(k) defined in (27). The set
of T variablesz2 then allows us to construct the distribution ofz2 (with N = 2) and to compare it
with theχ2-distribution with two degrees of freedom. We then measure the distancesd1, d2, d3 and
d4 defined by (33-36) between the distribution ofz2 and theχ2-distribution. The significancepi of
these distancesdi is calculated by generating 1,000 Gaussian time series witha correlation matrix
equal to the correlation matrix estimated from the originalStudent’s time series, according to the
steps 3 to 8 of the testing procedure described in section 3.2. Given a Student’s time series with
distancedi, the significance of this distance is

pi =
1

1000

1000
∑

k=1

1{di(z2(y(k)),χ2)>di}, (37)

wherey(k) = (y
(k)
t )1≤t≤T denotes thekth replication of a bivariate Gaussian time series of lengthT

and correlation coefficient equal to the correlation coefficient estimated from the original Student’s
time series.

Repeating this protocol 1,000 times for Student’s time series with the sameν andρ, we then
construct the cumulative distribution functionDi(p), i ∈ {1, 2, 3, 4} of the significancep obtained
for each of the four distancesd1, d2, d3 andd4. It thus allows us to get the minimum significance
level p such that we can discriminate a Student’s copula withν degrees of freedom and correlation

14



coefficientρ from a Gaussian copula with the same correlation coefficient, at the confidence level
Di(p), according to the test based upon distancedi. For instance, the minimum significance level
such that we can discriminate a Student’s copula withν degrees of freedom from a Gaussian copula
with the same correlation coefficient, at theα-confidence level, according to distancedi, is given by
Di(pα) = α. A small value ofpα corresponds to a clear distinction between Student’s and Gaussian
vectors, at theα-confidence level, as it is improbable that Gaussian vectorsexhibit a distance larger
than found for the Student’s vectors.

The cumulative distributionsDi(p) for each of the four distancesdi, i ∈ {1, 2, 3, 4} are shown in
figure 3 forν = 4 degrees of freedom and in figure 4 forν = 20 degrees of freedom, for5 different
values of the correlation coefficientρ = 0.1, 0.3, 0.5, 0.7 and0.9. The very steep increase observed
for almost all cases in figure 3 reflects the fact that most of the 1,000 Student’s vectors withν = 4
degrees of freedom have a smallp, i.e., their copula is easily distinguishable from the Gaussian
copula. The same cannot be stated for Student’s vectors withν = 20 degrees of freedom. Note also
that the distancesd1, d2 andd4 give essentially the same result while the Anderson-Darling distance
d3 is more sensitive toρ, especially for smallν.

Fixing for instance the confidence level atα = 95%, we can read from each of these curves in
figures 3 and 4 the minimump95%-value necessary to distinguish a Student’s copula with a givenν
from a Gaussian copula. Thisp95% is the abscissa corresponding to the ordinateD(p95%) = 0.95.
These valuesp95% are reported in table 1, for different values of the numberν of degrees of freedom
ranging fromν = 3 to ν = 50 and correlation coefficientsρ = 0.1 to 0.9. The values ofp95%(ν, ρ)
reported in table 1 are the minimum values that the statistical significancep should take in order
to be able to reject the hypothesis that a Student’s copula with ν degrees and correlationρ can be
mistaken with a Gaussian copula at the 95% confidence level.

The results of the table 1 are depicted in figures 5-6 and represent the “power” of the test.
The statistical power is usually defined as the probability of rejection of null hypothesis when false.
Here, we have not exactly depicted the conventional statistical power of the test, but, more precisely,
the minimum significance level allowing for the discrimination betweenH0 (the Gaussian copula)
and the alternative hypothesisH(ν−1) (Student’s copula withν degrees of freedom).

In the abscissa of figures 5-6 is ploted the inverseν−1 of the numberν of degrees of freedom,
which provides a natural “distance” between the Gaussian copula hypothesisH0 = H(ν−1=0) and
the Student’s copula hypothesisH(ν−1). The typical shape of these curves is a sigmoid, starting
from a value very close to one forν−1 → 0, decreasing asν−1 increases and going to 0 asν−1

becomes large enough. This typical shape simply expresses the fact that it is easy to separate a
Gaussian copula from a Student’s copula with a small number of degrees of freedom, while it is
difficult and even impossible for too large a number of degrees of freedom.

The figure 5 shows us that the distancesd1, d2 and d3 are not sensitive to the value of the
correlation coefficientρ, while the discriminating power ofd3 increases withρ. On figure 6, we
note thatd2 andd4 have the same discriminating power for allρ’s (which makes them somewhat
redundant) and that they are the most efficient to differentiateHν from H0 for smallρ. Whenρ is
about 0.5,d2, d3 andd4 (and maybed1) are equivalent with respect to the differential power, while
for largeρ, d3 becomes the most discriminating one with high significance.

This study of the test sensitivity involves a non-parametric approach and the question may arise
why it should be prefered to a direct parametric test involving for instance the calibration of the
Student copula. First, a parametric test of copulas would face the “curse of dimensionality”, i.e., the
estimation of functions of several variables. With the limited data set available, this does not seem
a reasonable approach. Second, we have taken the Student copula as an example of an alternative
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to the Gaussian copula. However, our tests are independent of this choice and aim mainly at testing
the rejection of the Gaussian copula hypothesis. They are thus of a more general nature than would
be a parametric test which would be forced to choose one family of copulas with the problem of
excluding others. The parametric test would then be exposedto the criticism that the rejection of a
given choice might not be of a general nature.

In the sequel, we will choose the level of95% as the level of rejection, which leads us to neglect
one extreme event out of twenty. This is not unreasonable in view of the other significant sources
of errors resulting in particular from the empirical determination of the marginals and from the
presence of outliers for instance.

4 Empirical results

We investigate the following assets :

• foreign exchange rates,

• metals traded on the London Metal Exchange,

• stocks traded on the New York Stocks Exchange.

4.1 Currencies

The sample we have considered is made of the daily returns forthe spot foreign exchanges for
6 currencies8 : the Swiss Franc (CHF), the German Mark (DEM), the Japanese Yen (JPY), the
Malaysian Ringgit (MYR), the Thai Baht (THA) and the BritishPound (UKP). All the exchange
rates are expressed against the US dollar. The time intervalruns over ten years, from January 25,
1989 to December 31, 1998, so that each sample contains 2500 data points.

We apply our test procedure to the entire sample and to two sub-samples of 1250 data points so
that the first one covers the time interval from January 25, 1989 to January 11, 1994 and the second
one from January 12, 1994 to December 31, 1998. The results are presented in tables 2 to 4 and
depicted in figures 7 to 9.

Tables 2-4 give, for the total time interval and for each of the two sub-intervals, the probability
p(d) to obtain from the Gaussian hypothesis a deviation between the distribution of thez2 and the
χ2-distribution with two degrees of freedom larger than the observed one for each of the 15 pairs of
currencies according to the distancesd1-d4 defined by (33)-(36).

The figures 7-9 organize the information shown in the tables 2-4 by representing, for each
distanced1 to d4, the number of currency pairs that give a test-valuep within a bin interval of
width 0.05. A clustering close to the origin signals a significant rejection of the Gaussian copula
hypothesis.

At the 95% significance level, table 2 and figure 7 show that only 40% (according tod1 andd3)
but 60% (according tod2 andd4) of the tested pairs of currencies are compatible with the Gaussian
copula hypothesis over the entire time interval. During thefirst half-period from January 25, 1989
to January 11, 1994 (table 3 and figure 8), 47% (according tod3) and up to about 75 % (according

8The data come from the historical database of the Federal Reserve Board.
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to d2 andd4) of the tested currency pairs are compatible with the assumption of Gaussian copula,
while during the second sub-period from January 12, 1994 to December 31, 1998 (table 4 and figure
9), between 66% (according tod1) and about 75% (according tod2, d3 andd4) of the currency pairs
remain compatible with the Gaussian copula hypothesis. These results raise several comments both
on a statistical and an economic point of view.

We first note that the most significant rejection of the Gaussian copula hypothesis is obtained
for the distanced3, which is indeed the most sensitive to the events in the tail of the distributions.
The test statistics given by this distance can indeed be verysensitive to the presence of a single large
event in the sample, so much so that the Gaussian copula hypothesis can be rejected only because
of the presence of this single event (outlier). The difference between the results given byd3 andd4

(the averagedd3) are very significant in this respect. Consider for instancethe case of the German
Mark and the Swiss Franc. During the time interval from January 12, 1994 to December 31, 1998,
we check on table 4 that the non-rejection probabilityp(d) is very significant according tod1, d2

andd4 (p(d) ≥ 31%) while it is very low according tod3: p(d) = 0.05%, and should lead to the
rejection of the Gaussian copula hypothesis. This suggeststhe presence of an outlier in the sample.

To check this hypothesis, we show in the upper panel of figure 10 the function

f3(t) =
|Fz2(z2(t) − Fχ2(χ2(t))|
√

Fχ2(χ2)[1 − Fχ2(χ2)]
, (38)

used in the definition of the Anderson-Darling distanced3 = maxz f3(z) (see definition (35)),
expressed in terms of timet rather thanz2. The function have been computed over the two time
sub-intervals separately.

Apart from three extreme peaks occurring on June20, 1989, August19, 1991 and September
16, 1992 during the first time sub-interval and one extreme peakon September10, 1997 during
the second time sub-interval, the statistical fluctuationsmeasured byf3(t) remain small and of the
same order. Excluding the contribution of these outlier events tod3, the new statistical significance
derived according tod3 becomes similar to that obtained withd1, d2 andd4 on each sub-interval.
From the upper panel of figure 10, it is clear that the Anderson-Darling distanced3 is equal to the
height of the largest peak corresponding to the event on August19, 1991 for the the first period and
to the event on September10, 1997 for the second period. These events are depicted by a circled
dot in the two lower panels of figure 10, which represent the return of the German Mark versus the
return of the Swiss Franc over the two considered time periods.

The event on August19, 1991 is associated with the coup against Gorbachev in Moscow: the
German mark (respectively the Swiss franc) lost 3.37% (respectively 0.74%) in daily annualized
value against the US dollar. The 3.37% drop of the German Markis the largest daily move of
this currency against the US dollar over the whole first period. On September10, 1997, the German
Mark appreciated by 0.60% against the US dollar while the Swiss Franc lost 0.79% which represents
a moderate move for each currency, but a large joint move. This event is related to the contradictory
announcements of the Swiss National Bank about the monetarypolicy, which put an end to a rally
of the Swiss Franc along with the German mark against the US dollar.

Thus, neglecting the large moves associated with major historical events or events associated
with unexpected incoming information9, which cannot be taken into account by a statistical study,
we obtain, ford3, significance levels compatible with those obtained with the other distances. We
can thus conclude that, according to the four distances, during the time interval from January 12,

9The outlier nature of the event on August 19, 1991 has been clearly demonstrated by Sornetteet al. (2003).
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1994 to December 31, 1998 the Gaussian copula hypothesis cannot be rejected for the couple Ger-
man Mark / Swiss Franc.

However, the non-rejection of the Gaussian copula hypothesis does not always have minor con-
sequences and may even lead to serious problem in stress scenarios. As shown in section 3.3, the
non-rejection of the Gaussian copula hypothesis does not exclude, at the 95% significance level,
that the dependence of the currency pairs may be accounted for by a Student’s copula with ade-
quate values ofν andρ. Still considering the pair German Mark / Swiss Franc, we seein table 1
that, according tod1, d2 andd4, a Student’s copula with about five degrees of freedom allowsto
reach the test values given in table 4. But, with the correlation coefficientρ = 0.92 for the German
Mark/Swiss Franc couple, the Gaussian copula assumption could lead to neglect a tail dependence
coefficientλ5(0.92) = 63% according to the Student’s copula prediction. Such a large value of
λ5(0.92) means that when an extreme event occurs for the German Mark italso occurs for the
Swiss Franc with a probability equals to0.63. Therefore, a stress scenario based on a Gaussian
copula assumption would fail to account for such coupled extreme events, which may represent as
many as two third of all the extreme events, if it would turn out that the true copula would be the
Student’s copula with five degrees of freedom. In fact, with such a value of the correlation coeffi-
cient, the tail dependence remains high even if the number ofdegrees of freedom reach twenty or
more (see figure 1).

The case of the Swiss Franc and the Malaysian Ringgit offers astriking difference. For instance,
in the second half-period, the test statisticsp(d) are greater than 70% and even reach 91% while the
correlation coefficient is onlyρ = 0.16, so that a Student’s copula with 7-10 degrees of freedom can
be mistaken with the Gaussian copula (see table 1). Even in the most pessimistic situationν = 7, the
choice of the Gaussian copula amounts to neglecting a tail dependence coefficientλ5(0.16) = 4%
predicted by the Student’s copula. In this case, stress scenarios based on the Gaussian copula would
predict uncoupled extreme events, which would be shown wrong only once out of twenty five times.

These two examples show that, more than the number of degreesof freedom of the Student’s
copula necessary to describe the data, the key parameter is the correlation coefficient.

From an economic point of view, the impact of regulatory mechanisms between currencies or
monetary crisis can be well identified by the rejection or absence of rejection of our null hypothesis.
Indeed, consider the couple German Mark / British Pound. During the first half period, their cor-
relation coefficient is very high (ρ = 0.82) and the Gaussian copula hypothesis is strongly rejected
according to the four distances. On the contrary, during thesecond half period, the correlation co-
efficient significantly decreases (ρ = 0.56) and none of the four distances allows us to reject our
null hypothesis. Such a non-stationarity can be easily explained. Indeed, on January 1, 1990, the
British Pound entered the European Monetary System (EMS), so that the exchange rate between
the German Mark and the British Pound was not allowed to fluctuate beyond a margin of 2.25%.
However, due to a strong speculative attack, the British Pound was devaluated on September 1992
and had to leave the EMS. Thus, between January 1990 and September 1992, the exchange rate of
the German Mark and the British Pound was confined within a narrow spread, incompatible with
the Gaussian copula description. After 1992, the British Pound exchange rate floated with respect to
German Mark, the dependence between the two currencies decreased, as shown by their correlation
coefficient. In this regime, we can no more reject the Gaussian copula hypothesis.

The impact of major crisis on the copula can be also clearly identified. Such a case is exhibited
by the couple Malaysian Ringgit/Thai Baht. Indeed, during the period from January 1989 to Jan-
uary 1994, these two currencies have only undergone moderate and weakly correlated (ρ = 0.29)
fluctuations, so that our null hypothesis cannot be rejectedat the 95% significance level. On the
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contrary, during the period from January 1994 to October 1998, the Gaussian copula hypothesis is
strongly rejected. This rejection is obviously due to the persistent and dependent (ρ = 0.44) shocks
incured by the Asian financial and monetary markets during the seven months of the Asian Crisis
from July 1997 to January 1998 (Baig and Goldfajn 1998, Kaminsky and Schlmukler 1999).

These two cases show that the Gaussian copula hypothesis canbe considered reasonable for
currencies in absence of regulatory mechanisms and of strong and persistent crises. They also
allows us to understand why the results of the test over the entire sample are so much weaker than
the results obtained for the two sub-intervals: the time series are strongly non-stationary.

4.2 Commodities: metals

We consider a set of 6 metals traded on the London Metal Exchange: aluminum, copper, lead, nickel,
tin and zinc. Each sample contains 2270 data points and covers the time interval from January 4,
1989 to December 30, 1997. The results are synthesized in table 5 and in figure 11.

Table 5 gives, for each of the 15 pairs of commodities, the probability p(d) to obtain from the
Gaussian hypothesis a deviation between the distribution of the z2 and theχ2-distribution with two
degrees of freedom larger than the observed one for the commodity pair according to the distances
d1-d4 defined by (33)-(36).

The figure 11 organizes the information shown in table 5 by representing, for each distance, the
number of commodity pairs that give a test-valuep within a bin interval of width0.05. A clustering
close to the origin signals a significant rejection of the Gaussian copula hypothesis.

According to the three distancesd1, d2 andd4, at least two third and up to93% of the set of 15
pairs of commodities are inconsistent with the Gaussian copula hypothesis. Surprisingly, according
to the distanced3, at the95% significance level, two third of the set of 15 pairs of commodities
remain compatible with the Gaussian copula hypothesis. This is the reverse to the previous situation
found for currencies. These test values lead to globally reject the Gaussian copula hypothesis.

Moreover, the largest value obtained for the distanced3 is p = 65% for the pair copper-tin,
which is significantly smaller than the80% or 90% reached for some currencies over a similar time
interval. Thus, even in the few cases where the Gaussian copula assumption is not rejected, the test
values obtained are not really sufficient to distinguish between the Gaussian copula and a Student’s
copula withν = 5 ∼ 6 degrees of freedom. In such a case, with correlation coefficients ranging
between0.31 and0.46, the tail dependence neglected by keeping the Gaussian copula is no less
than10% and can reach15%. One extreme event out of seven or ten might occur simultaneously
on both marginals, which would be missed by the Gaussian copula.

To summarize, the Gaussian copula does not seem a reasonableassumption for metals, and it
has not appeared necessary to test these data over smaller time interval.

4.3 Stocks

We now study the daily returns distributions for 22 stocks among the largest companies quoted
on the New York Stock Exchange10: Appl. Materials (AMAT), AT&T (T), Citigroup (C), Coca
Cola (KO), EMC, Exxon-Mobil (XOM), Ford (F), General Electric (GE), General Motors (GM),
Hewlett Packard (HPW), IBM, Intel (INTC), MCI WorldCom (WCOM), Medtronic (MDT), Merck

10The data come from the Center for Research in Security Prices(CRSP) database.
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(MRK), Microsoft (MSFT), Pfizer (PFE), Procter&Gamble (PG), SBC Communication (SBC), Sun
Microsystem (SUNW), Texas Instruments (TXN), Wal Mart (WMT).

Each sample contains 2500 data points and covers the time interval from February 8, 1991 to
December 29, 2000 and have been divided into two sub-samplesof 1250 data points, so that the first
one covers the time interval from February 8, 1991 to January18, 1996 and the second one from
January 19, 1996 to December 20, 2000. The results of fifteen randomly chosen pairs of assets are
presented in tables 6 to 8 while the results obtain for the entire set are represented in figures 12 to
14.

At the 95% significance level, figure 12 shows that 75% of the pairs of stocks are compatible
with the Gaussian copula hypothesis. Figure 13 shows that over the time interval from February
1991 to January 1996, this percentage becomes larger than 99% for d1, d2 andd4 while it equals
94% according tod3. It is striking to note that, during this period, according to d1, d2 and d4,
more than a quarter of the stocks obtain a test-valuep larger than 90%, so that we can assert that
they are completely inconsistent with the Student’s copulahypothesis for Student’s copulas with
less than 10 degrees of freedom. Among this set of stocks, nota single one has a correlation
coefficient larger than0.4, so that a scenario based on the Gaussian copula hypothesis leads to
neglecting a tail dependence of less than5% as would be predicted by the Student’s copula with
10 degrees of freedom. In addition, about80% of the pairs of stocks lead to a test-valuep larger
than50% according to the distancesd1, d2 andd4, so that as much as80% of the pairs of stocks
are incompatible with a Student’s copula with a number of degrees of freedom less than or equal
to 5. Thus, for correlation coefficients smaller than0.3, the Gaussian copula hypothesis leads to
neglecting a tail dependence less than10%. For correlation coefficients smaller than0.1 which
corresponds to13% of the total number of pairs, the Gaussian copula hypothesisleads to neglecting
a tail dependence less than5%.

Figure 14 shows that, over the time interval from January 1996 to December 2000,92% of the
pairs of stocks are compatible with the Gaussian copula hypothesis according tod1, d2 andd4 and
more than79% according tod3. About a quarter of the pair of stocks have a test-valuep larger than
50% according to the four measures and thus are inconsistent with a Student’s copula with less than
five degrees of freedom.

For completeness, we present in table 9 the results of the tests performed for five stocks be-
longing to the computer area : Hewlett Packard, IBM, Intel, Microsoft and Sun Microsystem. We
observe that, during the first half period, all the pairs of stocks qualify the Gaussian copula Hypoth-
esis at the 95% significance level. The results are rather different for the second half period since
about40% of the pairs of stocks reject the Gaussian copula hypothesisaccording tod1, d2 andd3.
This is probably due to the existence of a few shocks, notablyassociated with the crash of the “new
economy” in March-April 2000.

On the whole, it appears however that there is no systematic rejection of the Gaussian copula
hypothesis for stocks within the same industrial area, notwithstanding the fact that one can expect
stronger correlations between such stocks than for currencies for instance.

5 Conclusion and comparison with other studies

We have studied the null hypothesis that the dependence between pairs of financial assets can be
modeled by the Gaussian copula.
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Our test procedure is based on the following simple idea. Assuming that the copula of two
assetsX and Y is Gaussian, then the multivariate distribution of(X,Y ) can be mapped into a
Gaussian multivariate distribution, by a transformation of each marginal into a normal distribution,
which leaves the copula ofX andY unchanged. Testing the Gaussian copula hypothesis is there-
fore equivalent to the more standard problem of testing a two-dimensional multivariate Gaussian
distribution. We have used a bootstrap method to determine and calibrate the test statistics. Four
different measures of distances between distributions, more or less sensitive to the departure in the
bulk or in the tail of distributions, have been proposed to quantify the probability of rejection of our
null hypothesis.

Our tests have been performed over three types of assets: currencies, commodities (metals) and
stocks. In most cases, for currencies and stocks, the Gaussian copula hypothesis can not be rejected
at the 95% confidence level. For currencies, according to three of the four distances at least,

• 40% of the pairs of currencies, over a 10 years time interval (due to non-stationary data),

• 67% of the pairs of currencies, over the first 5 years time interval,

• 73% of the pairs of currencies, over the second 5 years time interval,

are compatible with the Gaussian copula hypothesis. For stocks, we have shown that

• 75% of the pairs of stocks, over a 10 years time interval,

• 93% of the pairs of stocks, over the first 5 years time interval,

• 92% of the pairs of stocks, over the second 5 years time interval,

are compatible with the Gaussian copula hypothesis. In contrast, the Gaussian copula hypothesis
cannot be considered as reasonable for metals : between 66% and 93% of the pairs of metals reject
the null hypothesis at the 95% confidence level.

Notwithstanding the apparent qualification of the Gaussiancopula hypothesis for most of the
currencies and the stocks we have analyzed, we must bear in mind the fact that a non-Gaussian cop-
ula cannot be rejected. In particular, we have shown that a Student’s copula can always be mistaken
for a Gaussian copula if its number of degrees of freedom is sufficiently large. Then, depending on
the correlation coefficient, the Student’s copula can predict a non-negligible tail dependence which
is completely missed by the Gaussian copula assumption. In other words, the Gaussian copula
predicts no tail dependences and therefore does not accountfor extreme events that may occur si-
multaneously but nevertheless too rarely to modify the teststatistics. To quantify the probability
for neglecting such events, we have investigated the situations when one is unable to distinguish
between the Gaussian and Student’s copulas for a given number of degrees of freedom. Our study
leads to the conclusion that it may be very dangerous to embrace blindly the Gaussian copula hy-
pothesis when the correlation coefficient between the pair of asset is too high as the tail dependence
neglected by the Gaussian copula can be as large as0.6. In this respect, the case of the Swiss Franc
and the German Mark is striking. The test valuesp obtained are very significant (about33%), so
that we cannot mistake the Gaussian copula for a Student’s copula with less than 5-7 degrees of
freedom. However, their correlation coefficient is so high (ρ = 0.9) that a Student’s copula with,
sayν = 30 degrees of freedom, still has a large tail dependence.

This remark shows that it is highly desirable to test for other non-Gaussian copulas, such as
the Student’s copula. Breymannet al. (2003) have recently shown that the dependence structure of
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the couple German Mark / Japanese Yen is (slightly?) better described by a Student’s copula with
about six degrees of freedom (for daily returns) than a Gaussian copula, according to the Akaike
information criterion. This result is compatible with and precises ours, since in table 2 - where
investigated period covers a time interval comparable withthat used by Breymannet al. (2003) - we
see that our test cannot reject a Student’s copula with more than 3-4 degrees of freedom. However,
the stationarity of the data over such a long period is not well ascertained, as proved by the results
in tables 3-4, where we observe an important increase of the significance of the non-rejection of the
Gaussian copula hypothesis during the second time intervalwith respect to the first one. In both
cases, however, significance levels remain consistent withthe non-rejection of a Student’s copula
with about 6 degrees of freedom.

In the study by Mashal and Zeevi (2002), it is claimed that thedependence between stocks is
significantly better accounted for by a Student’s copula with 11-12 degrees of freedom than by a
Gaussian copula. Again, our results are compatible with those ones. However, contrarily to the case
of currencies, the real improvement brought by the description of the dependence between stocks in
terms of a Student’s copula is questionable. Indeed, as underlined in section 4.3, correlation coef-
ficients between two stocks are hardly greater than0.4, so that the tail dependence of the Student’s
copula with 11-12 degrees of freedom is about2.5% or less (see figures 1-2). In view of all the
different sources of uncertainty during the estimation process in addition to the non-stationarity of
the data, we doubt that such a description eventually leads to concrete improvement for practical
purposes.

Finally, we want to stress that the question of the assessment of the coefficient of tail dependence
must be studied for its own. Indeed, as we have seen, copulas estimation only yields poor estimate
of this quantity, and are mainly based on thea priori assumption of the existence or not of such a tail
dependence. Therefore, we think that it is necessary to develop tests that are specific to the detection
of a possible tail dependence between two time series. Some results concerning stocks have been
obtained by Malevergne and Sornette (2002a, b) and indicatethe existence of a tail dependence
ranging between about five and fifteen percent during the timeperiod considered in the present
study (see Malevergne and Sornette (2002a)). Such estimates of the coefficient of tail dependence
are barely compatible with estimates performed under the Student’s copula hypothesis and more
generally under the elliptical copula assumption. Thus, asa conservative conclusion and in view of
the different studies concerning this problem, we think that the Gaussian copula provides the most
parsimonious description of the dependence between stock returns, apart from crisis periods. In
such periods, the Student’s copula does not bring a really better practical model since it turns out
that it still underestimate the dependence of tail events.

To our knowledge, no direct investigation of the tail dependence between currencies have yet
been performed. Thus, we cannot raise the same conclusion asfor stocks, and assert that the Stu-
dent’s copula still underestimate the tail dependence. As aconsequence, for such assets, the pru-
dence leads to recommend the choice of the Student’s copula with respect to the Gaussian copula
for risk management purposes.
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Figure 1: Upper tail dependence coefficientλν(ρ) for the Student’s copula withν degrees of free-
dom as a function of the correlation coefficientρ, for different values ofν.
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Figure 2: Maximum value of the correlation coefficientρ as a function ofν, below which the tail
dependenceλν(ρ) of a Student’ copula is smaller than a given small value, heretaken equal to
λν(ρ) = 1%, 2.5%, 5% and10%. The choiceλν(ρ) = 5% for instance corresponds to1 event in
20 for which the pair of variables are asymptotically coupled.At the 1 − λν(ρ) probability level,
values ofλ ≤ λν(ρ) are undistinguishable from0, which means that the Student’s copula can be
approximated by a Gaussian copula.

27



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

d
1

ρ=0.1
ρ=0.3
ρ=0.5
ρ=0.7
ρ=0.9

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

d
2

ρ=0.1
ρ=0.3
ρ=0.5
ρ=0.7
ρ=0.9

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

d
3

ρ=0.1
ρ=0.3
ρ=0.5
ρ=0.7
ρ=0.9

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

d
4

ρ=0.1
ρ=0.3
ρ=0.5
ρ=0.7
ρ=0.9

Figure 3: Cumulative distribution functionD(p) obtained as the fraction of Student’s pairs with
ν = 4 degrees of freedom that exhibit a value of at lostp for the probability that Gaussian vectors
can have a similar or larger distance. See the text for a detailed description of howD(p) is defined
and constructed. Each panel corresponds to one of the four distancesdi, i ∈ {1, 2, 3, 4},defined in
the text by equations (33-36). In each panel, we construct the cumulative distribution functionD(p)
for 5 different values of the correlation coefficientρ = 0.1, 0.3, 0.5, 0.7 and0.9 of the Student’s
copula.
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Figure 4: Same as figure 3 for Student’s distributions withν = 20 degrees of freedom.
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ν = 3

ρ 0.1 0.3 0.5 0.7 0.9
d1 0.07 0.08 0.07 0.04 0.07
d2 0.03 0.03 0.07 0.04 0.06
d3 0.22 0.17 0.08 0.03 0.01
d4 0.03 0.03 0.08 0.03 0.04

ν = 4

ρ 0.1 0.3 0.5 0.7 0.9
d1 0.28 0.26 0.32 0.30 0.29
d2 0.18 0.17 0.21 0.21 0.24
d3 0.36 0.33 0.26 0.15 0.03
d4 0.18 0.17 0.23 0.21 0.21

ν = 5

ρ 0.1 0.3 0.5 0.7 0.9
d1 0.46 0.47 0.46 0.52 0.52
d2 0.36 0.34 0.39 0.44 0.43
d3 0.52 0.54 0.47 0.30 0.14
d4 0.37 0.36 0.43 0.45 0.45

ν = 7

ρ 0.1 0.3 0.5 0.7 0.9
d1 0.78 0.81 0.81 0.81 0.86
d2 0.71 0.78 0.76 0.77 0.82
d3 0.80 0.81 0.82 0.73 0.52
d4 0.75 0.81 0.79 0.80 0.83

ν = 8

ρ 0.1 0.3 0.5 0.7 0.9
d1 0.85 0.86 0.87 0.88 0.89
d2 0.85 0.84 0.86 0.87 0.88
d3 0.91 0.91 0.91 0.81 0.70
d4 0.86 0.85 0.90 0.89 0.90

ν = 10

ρ 0.1 0.3 0.5 0.7 0.9
d1 0.92 0.93 0.96 0.95 0.94
d2 0.93 0.92 0.95 0.96 0.94
d3 0.96 0.96 0.96 0.95 0.88
d4 0.94 0.94 0.96 0.97 0.95

ν = 20

ρ 0.1 0.3 0.5 0.7 0.9
d1 0.97 0.99 0.97 0.99 0.99
d2 0.99 0.99 0.97 0.99 0.99
d3 0.99 0.99 0.98 0.99 0.97
d4 0.99 0.99 0.98 0.99 0.99

ν = 50

ρ 0.1 0.3 0.5 0.7 0.9
d1 0.99 0.99 0.99 0.99 0.99
d2 0.99 0.99 0.99 0.99 0.99
d3 0.99 0.99 0.99 0.99 0.99
d4 0.99 0.99 0.99 0.99 0.99

Table 1: The valuesp95%(ν, ρ) shown in this table give the minimum values that the significanep
should take in order to be able to reject the hypothesis that aStudent’s copula withν degrees and
correlationρ is undistinguishable from a Gaussian copula at the 95% confidence level.p95% is the
abscissa corresponding to the ordinateD(p95%) = 0.95 shown in figures 3 and 4.p is the probability
that pairs of Gaussian random variables with the correlation coefficientρ have a distance (between
the distribution ofz2 and the theoreticalχ2 distribution) equal to or larger than the corresponding
distance obtained for the Student’s vector time series. A small p corresponds to a clear distinction
between Student’s and Gaussian vectors, as it is improbablethat Gaussian vectors exhibit a distance
larger than found for the Student’s vectors. Different values of the numberν of degrees of freedom
ranging fromν = 3 to ν = 50 and of the correlation coefficientρ = 0.1 to 0.9 are shown. Let us
take for instance the example withν = 4 andρ = 0.3. The table indicates thatp should be less
than about0.3 (resp.0.2) according to the distancesd1 andd3 (resp.d2 andd4) for being able to
distinguish this Student’s copula from the Gaussian copulaat the 95% confidence level. This means
that less than20 − 30% of Gaussian vectors should have a distance for theirz2 larger than the one
found for the Student’s. See text for further explanations.
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Figure 5: Graph of the minimum significance levelp95% necessary to distinguish the Gaussian
copula hypothesisH0 from the hypothesis of a student copula withν degrees of freedom, as a
function of 1/ν, for a given distancedi and various correlation coefficientsρ = 0.1, 0.3, 0.5, 0.7
and0.9.
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Figure 6: Same as figure 5 but comparing different distances for the same correlation coefficientρ.
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ρ̂ d1 d2 d3 d4

CHF DEM 0.92 1.01% 0.67% 0.00% 0.72%
CHF JPY 0.53 34.40% 27.10% 2.32% 28.30%
CHF MYR 0.23 72.70% 87.10% 57.70% 92.60%
CHF THA 0.21 3.08% 9.47% 3.31% 9.52%
CHF UKP 0.69 0.28% 0.18% 0.06% 0.13%
DEM JPY 0.54 2.26% 13.30% 10.00% 15.10%
DEM MYR 0.26 42.50% 67.70% 62.20% 73.50%
DEM THA 0.24 6.53% 13.50% 3.26% 13.20%
DEM UKP 0.72 0.17% 0.04% 0.00% 0.04%
JPY MYR 0.31 2.45% 6.34% 22.60% 6.86%
JPY THA 0.34 0.00% 0.00% 3.24% 0.00%
JPY UKP 0.41 2.85% 3.72% 5.22% 3.09%
MYR THA 0.40 0.00% 0.00% 2.22% 0.00%
MYR UKP 0.21 69.40% 79.40% 62.30% 83.10%
THA UKP 0.15 52.20% 62.30% 3.21% 70.50%

Table 2: Each row gives the statistics of our test for each of the 15 pairs of currencies over a
10 years time interval from January 25, 1989 to December 31, 1998. The column̂ρ gives the
empirical correlation coefficient for each pair determinedas in section 3.1 and defined in (31). The
columnsd1, d2, d3 andd4 gives the probability to obtain, from the Gaussian hypothesis, a deviation
between the distribution of thez2 and theχ2-distribution with two degrees of freedom larger than
the observed one for the currency pair according to the distancesd1-d4 defined by (33)-(36).
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ρ̂ d1 d2 d3 d4

CHF DEM 0.92 1.73% 1.33% 0.00% 1.31%
CHF JPY 0.55 13.40% 14.90% 38.30% 14.10%
CHF MYR 0.32 84.70% 70.00% 35.60% 74.00%
CHF THA 0.17 44.00% 71.00% 3.53% 71.10%
CHF UKP 0.79 0.31% 0.10% 0.00% 0.05%
DEM JPY 0.56 2.46% 9.43% 16.30% 9.26%
DEM MYR 0.35 93.20% 79.50% 35.10% 79.50%
DEM THA 0.21 43.60% 87.70% 3.47% 87.40%
DEM UKP 0.82 0.00% 0.00% 0.00% 0.00%
JPY MYR 0.34 49.00% 54.90% 36.60% 59.40%
JPY THA 0.27 38.90% 30.60% 3.37% 35.90%
JPY UKP 0.53 0.09% 1.66% 6.72% 1.67%
MYR THA 0.29 10.80% 8.71% 3.42% 9.30%
MYR UKP 0.33 11.20% 28.60% 35.40% 34.50%
THA UKP 0.21 43.40% 86.20% 3.13% 86.70%

Table 3: Same as table 2 for currencies over a 5 years time interval from January 25, 1989 to January
11, 1994.
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ρ̂ d1 d2 d3 d4

CHF DEM 0.92 31.50% 31.10% 0.05% 34.10%
CHF JPY 0.52 58.40% 64.40% 1.98% 67.40%
CHF MYR 0.16 71.10% 91.50% 88.30% 92.20%
CHF THA 0.25 1.10% 3.87% 10.50% 3.34%
CHF UKP 0.53 9.75% 10.30% 23.30% 9.29%
DEM JPY 0.53 36.30% 54.00% 1.77% 65.40%
DEM MYR 0.18 35.50% 50.00% 58.40% 56.70%
DEM THA 0.28 1.28% 2.18% 10.80% 1.51%
DEM UKP 0.56 11.50% 11.00% 30.20% 10.60%
JPY MYR 0.29 7.63% 21.40% 6.67% 22.30%
JPY THA 0.38 0.00% 0.02% 3.09% 0.02%
JPY UKP 0.28 46.20% 23.00% 12.30% 20.70%
MYR THA 0.44 0.05% 0.12% 5.34% 0.12%
MYR UKP 0.11 59.40% 74.40% 69.50% 78.20%
THA UKP 0.12 1.26% 7.66% 11.90% 6.51%

Table 4: Same as table 2 for currencies over a 5 years time interval from January 12, 1994 to
December 31, 1998.

35



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

d
1

d
2

d
1

d
4

Figure 7: For each distanced1-d4 defined in equations (33)-(36), this figure shows the number of
currency pairs that give a givenp (shown on the abscissa) within a bin interval of width0.05 for
different currencies over a 10 years time interval from January 25, 1989 to December 31, 1998.p is
the probability that pairs of Gaussian random variables with the same correlation coefficientρ have
a distance (between the distribution ofz2 and the theoreticalchi2 distribution) equal to or larger
than the corresponding distance obtained for each currencypair. A clustering close to the origin
signals a significant rejection of the Gaussian copula hypothesis.
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Figure 8: Same as figure 7 for currencies over a 5 years time interval from January 25, 1989 to
January 11, 1994.
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Figure 9: Same as figure 7 for currencies over a 5 years time interval from January 12, 1994 to
December 1998.
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ρ̂ d1 d2 d3 d4

aluminum copper 0.46 6.46% 4.48% 1.45% 4.00%
aluminum lead 0.35 11.40% 5.01% 17.00% 4.59%
aluminum nickel 0.36 0.33% 0.51% 3.41% 0.62%
aluminum tin 0.34 13.40% 13.80% 1.25% 15.90%
aluminum zinc 0.36 0.23% 0.22% 6.21% 0.23%
copper lead 0.35 4.71% 1.74% 17.90% 1.34%
copper nickel 0.38 4.91% 4.60% 14.80% 3.80%
copper tin 0.32 19.40% 13.50% 65.30% 14.70%
copper zinc 0.40 3.24% 2.05% 17.50% 1.94%
lead nickel 0.32 6.71% 3.78% 27.40% 3.62%
lead tin 0.33 7.86% 4.04% 4.91% 3.31%
lead zinc 0.42 0.02% 0.01% 4.59% 0.03%
nickel tin 0.35 0.91% 0.92% 8.70% 0.76%
nickel zinc 0.33 0.08% 0.34% 8.91% 0.35%
tin zinc 0.31 0.53% 2.02% 10.30% 1.75%

Table 5: Same as table 2 for metals over a 9 years time intervalfrom January 4, 1989 to December
30, 1997.
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Figure 10: The upper panel represents the graph of the function f3(t) defined in (38) used in the
definition of the distanced3 for the couple Swiss Franc/German Mark as a function of timet,
over the time intervals from January 25, 1989 to January 11, 1994 and from January 12, 1994 to
December 31, 1998. The two lower panels represent the scatter plot of the return of the German
Mark versus the return of the Swiss Franc during the two previous time periods. The circled dot, in
each figure, shows the pair of returns responsible for the largest deviation off3 during the considered
time interval.
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Figure 11: Same as figure 7 for metals over a 9 years time interval from January 4, 1989 to December
30, 1997.
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ρ̂ d1 d2 d3 d4

amat pfe 0.15 7.41% 11.20% 0.84% 11.40%
c sunw 0.28 25.60% 48.70% 10.90% 53.90%
f ge 0.33 25.20% 27.40% 11.50% 29.00%
gm ibm 0.21 14.90% 38.50% 16.20% 41.80%
hwp sbc 0.12 42.30% 16.90% 25.20% 17.20%
intc mrk 0.17 24.80% 10.90% 64.60% 10.40%
ko sunw 0.14 14.10% 10.10% 21.20% 9.35%
mdt t 0.16 12.10% 28.10% 8.41% 29.80%
mrk xom 0.19 15.40% 15.00% 11.20% 14.50%
msft sunw 0.44 3.40% 1.85% 0.26% 1.74%
pfe wmt 0.27 4.24% 4.12% 15.40% 3.74%
t wcom 0.27 5.67% 8.02% 5.44% 9.07%
txn wcom 0.28 47.90% 37.70% 15.20% 37.50%
wmt xom 0.20 0.32% 0.00% 6.02% 0.00%

Table 6: Same as table 2 for stocks over a 10 years time interval from February 8, 1991 to December
29, 2000.
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ρ̂ d1 d2 d3 d4

amat pfe 0.10 58.30% 58.10% 11.80% 63.80%
c sunw 0.23 46.60% 59.40% 43.40% 61.60%
f ge 0.31 87.30% 78.70% 15.40% 84.80%
gm ibm 0.21 60.00% 65.30% 10.30% 52.70%
hwp sbc 0.11 87.30% 80.60% 28.40% 85.90%
intc mrk 0.13 85.90% 82.10% 5.48% 86.50%
ko sunw 0.20 35.30% 59.80% 45.10% 67.90%
mdt t 0.14 90.90% 89.80% 16.80% 91.50%
mrk xom 0.12 53.60% 62.10% 12.00% 61.80%
msft sunw 0.40 26.80% 13.80% 16.00% 13.90%
pfe wmt 0.23 29.40% 46.60% 14.10% 52.30%
t wcom 0.19 79.20% 93.60% 4.95% 94.90%
txn wcom 0.23 91.00% 98.30% 10.00% 99.30%
wmt xom 0.22 71.60% 67.10% 7.35% 68.90%

Table 7: Same as table 2 for stocks over a 5 years time intervalfrom February 8, 1991 to January
18, 1996.

43



ρ̂ d1 d2 d3 d4

amat pfe 0.19 29.60% 33.90% 3.10% 39.50%
c sunw 0.31 71.20% 65.80% 94.70% 70.80%
f ge 0.34 38.00% 23.60% 32.20% 21.80%
gm ibm 0.21 3.05% 17.90% 23.70% 21.90%
hwp sbc 0.11 34.70% 61.30% 71.70% 64.00%
intc mrk 0.20 13.10% 20.60% 55.70% 20.50%
ko sunw 0.10 68.90% 34.40% 85.90% 35.20%
mdt t 0.19 42.80% 61.10% 50.10% 57.90%
mrk xom 0.23 35.70% 66.40% 11.30% 73.80%
msft sunw 0.46 5.79% 7.60% 0.08% 8.07%
pfe wmt 0.30 23.10% 21.20% 55.90% 19.80%
t wcom 0.33 12.00% 13.70% 17.30% 14.00%
txn wcom 0.31 56.30% 40.60% 46.40% 41.70%
wmt xom 0.19 16.10% 5.38% 3.78% 4.94%

Table 8: Same as table 2 for stocks over a 5 years time intervalfrom January 19, 1996 to December
29, 2000.
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Figure 12: Same as figure 7 for stocks over a 10 years time interval from February 8, 1991 to
December 29, 2000.
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Figure 13: Same as figure 7 for stocks over a 5 years time interval from February 8, 1991 to January
18, 1996.
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Figure 14: Same as figure 7 for stocks over a 5 years time interval from January 19, 1996 to De-
cember 30, 2000.
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Time interval from
February 8, 1991 to
January 18, 1996

ρ̂ d1 d2 d3 d4

hwp ibm 0.34 33.60% 22.60% 33.30% 23.50%
hwp intc 0.46 30.10% 47.30% 51.20% 52.10%
hwp msft 0.41 76.30% 47.20% 32.30% 45.30%
hwp sunw 0.40 29.60% 29.80% 76.60% 35.40%
ibm intc 0.30 48.10% 35.40% 4.18% 33.40%
ibm msft 0.24 39.30% 66.10% 58.80% 70.70%
ibm sunw 0.29 96.50% 97.10% 34.60% 98.60%
intc msft 0.47 25.90% 14.50% 4.50% 15.30%
intc sunw 0.40 48.10% 38.60% 4.47% 39.50%
msft sunw 0.40 26.80% 13.80% 16.60% 13.90%

Time interval from
January 19, 1996 to
December 29, 2000

ρ̂ d1 d2 d3 d4

hwp ibm 0.46 2.02% 3.21% 0.96% 3.96%
hwp intc 0.44 2.88% 4.89% 0.06% 5.80%
hwp msft 0.37 5.23% 9.88% 33.60% 11.80%
hwp sunw 0.45 56.60% 56.50% 10.80% 62.30%
ibm intc 0.43 5.34% 3.31% 1.68% 2.44%
ibm msft 0.39 1.00% 0.95% 2.28% 0.88%
ibm sunw 0.46 23.50% 15.60% 33.80% 14.90%
intc msft 0.57 31.80% 16.10% 11.50% 17.10%
intc sunw 0.50 6.68% 3.55% 0.01% 4.37%
msft sunw 0.46 5.79% 7.60% 0.08% 8.07%

Table 9: Same as table 2 for stocks belonging to the informatic sector, over two time intervals of 5
years.
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